Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38399438

RESUMO

Malaria, Chagas disease, and leishmaniasis are tropical diseases caused by protozoan parasites of the genera Plasmodium, Trypanosoma and Leishmania, respectively. These diseases constitute a major burden on public health in several regions worldwide, mainly affecting low-income populations in economically poor countries. Severe side effects of currently available drug treatments and the emergence of resistant parasites need to be addressed by the development of novel drug candidates. Natural 2,5-Diketopiperazines (2,5-DKPs) constitute N-heterocyclic secondary metabolites with a wide range of biological activities of medicinal interest. Its structural and physicochemical properties make the 2,5-DKP ring a versatile, peptide-like, and stable pharmacophore attractive for synthetic drug design. In the present work, twenty-three novel synthetic 2,5-DKPs, previously synthesized through the versatile Ugi multicomponent reaction, were assayed for their anti-protozoal activities against P. falciparum, T. cruzi, and L. infantum. Some of the 2,5-DKPs have shown promising activities against the target protozoans, with inhibitory concentrations (IC50) ranging from 5.4 to 9.5 µg/mL. The most active compounds also show low cytotoxicity (CC50), affording selectivity indices ≥ 15. Results allowed for observing a clear relationship between the substitution pattern at the aromatic rings of the 2,5-DKPs and their corresponding anti-Plasmodium activity. Finally, calculated drug-like properties of the compounds revealed points for further structure optimization of promising drug candidates.

2.
Chem Biodivers ; 21(4): e202301935, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38363210

RESUMO

Cannabidiol (CBD) is a substance that exerts several therapeutic actions, including analgesia. CBD is generally administered orally, but its poor water solubility and metabolism impair its bioavailability. Thus, the development of molecules with better pharmacokinetic profile from cannabidiol becomes an interesting strategy for the design of novel analgesic drugs for the relief of painful conditions that are difficult to manage clinically, such as neuropathic pain. In the present study, an unprecedented analogue of CBD (1) was synthesized and some of its physicochemical properties were evaluated in silico as well as its stability in an acid medium. Additionally, its effect was investigated in a model of neuropathic pain induced by the chemotherapy drug paclitaxel in mice, in comparison with cannabidiol itself. Cannabidiol (20 mg/kg), pregabalin (30 mg/kg), or analogue 1 (5, 10, and 20 mg/kg), administered on the 14th day after the first administration of paclitaxel, attenuated the mechanical allodynia of the sensitized animals. The antinociceptive activity of analogue 1 was attenuated by previous administration of a cannabinoid CB1 receptor antagonist, AM 251, which indicates that its mechanism of action is related to the activation of CB1 receptors. In conclusion, the CBD analogue 1 developed in this study shows great potential to be used in the treatment of neuropathic pain.


Assuntos
Canabidiol , Neuralgia , Camundongos , Animais , Canabidiol/efeitos adversos , Modelos Animais de Doenças , Neuralgia/tratamento farmacológico , Neuralgia/induzido quimicamente , Paclitaxel/farmacologia , Analgésicos/farmacologia , Analgésicos/uso terapêutico
3.
Sci Rep ; 14(1): 2258, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278839

RESUMO

Fridericia formosa (Bureau) L.G. Lohmann (Bignonaceae) is a neotropical liana species found in the Cerrado biome in Brazil. It has been of great interest to the scientific community due to its potential as a source of new antivirals, including xanthones derived from mangiferin. In this context, the present study aimed to characterize and quantify the xanthones present in the ethanol extract of this species using high performance liquid chromatography. Additionally, the antiviral activity against Chikungunya, Zika, and Mayaro viruses was evaluated. The chromatographic analyses partially identified twenty-six xanthones, among which only fourteen had already been described in the literature. The xanthones mangiferin, 2'-O-trans-caffeoylmangiferin, and 2'-O-trans-coumaroylmangiferin, are present in higher quantities in the extract, at concentrations of 9.65%, 10.68%, and 3.41% w/w, respectively. In antiviral assays, the extract inhibited the multiplication cycle only for the Mayaro virus with a CE50 of 36.1 µg/mL. Among the isolated xanthones, 2'-O-trans-coumaroylmangiferin and 2'-O-trans-cinnamoylmangiferin inhibited the viral cytopathic effect with CE50 values of 180.6 and 149.4 µg/mL, respectively. Therefore, the extract from F. formosa leaves, which has a high content of xanthones, has antiviral potential and can be a source of new mangiferin derivatives.


Assuntos
Bignoniaceae , Xantonas , Infecção por Zika virus , Zika virus , Taiwan , Xantonas/farmacologia , Xantonas/química , Extratos Vegetais/química , Etanol , Antivirais/farmacologia
4.
J Med Chem ; 66(24): 16628-16645, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38064359

RESUMO

Opportunistic fungal infections represent a global health problem, mainly for immunocompromised individuals. New therapeutical options are needed since several fungal strains show resistance to clinically available antifungal agents. 2-Thiazolylhydrazones are well-known as potent compounds against Candida and Cryptococcus species. A scaffold-focused drug design using machine-learning models was established to optimize the 2-thiazolylhydrazone skeleton and obtain novel compounds with higher potency, better solubility in water, and enhanced absorption. Twenty-nine novel compounds were obtained and most showed low micromolar MIC values against different species of Candida and Cryptococcus spp., including Candida auris, an emerging multidrug-resistant yeast. Among the synthesized compounds, 2-thiazolylhydrazone 28 (MIC value ranging from 0.8 to 52.17 µM) was selected for further studies: cytotoxicity evaluation, permeability study in Caco-2 cell model, and in vivo efficacy against Cryptococcus neoformans in an invertebrate infection model. All results obtained indicate the great potential of 28 as a novel antifungal agent.


Assuntos
Antifúngicos , Micoses , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Células CACO-2 , Testes de Sensibilidade Microbiana , Candida , Micoses/tratamento farmacológico
5.
Front Pharmacol ; 14: 1287580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026962

RESUMO

Introduction: Nephelium lappaceum L. (Sapindaceae) is a plant known as rambutan. It is used for various purposes in traditional medicine. Objective: We aimed to evaluate the antinociceptive effects of the ethanol extract of the fruit peel of N. lappaceum (EENL), the mechanisms involved in these effects, and the acute toxicity in zebrafish. Methods: We performed chromatography coupled to mass spectrometry, acute toxicity assay in zebrafish, and evaluation in mice submitted to models of nociception and locomotor activity. Results: We identified (epi)-catechin, procyanidin B, and ellagic acid and its derivatives in EENL. We did not find any toxicity in zebrafish embryos incubated with EENL. The locomotor activity of mice submitted to oral pretreatment with EENL was not changed, but it reduced the abdominal constrictions induced by acetic acid, the licking/biting time in both the first and second phase of formalin testing and capsaicin testing, and carrageenan-induced paw mechanical allodynia. Oral pretreatment with EENL increased latency time in the hot plate test. This antinociceptive effect was significantly reversed by naloxone, L-arginine, and glibenclamide respectively showing the participation of opioid receptors, nitric oxide, and KATP channels as mediators of EENL-induced antinociception. Conclusion: EENL causes antinociception with the participation of opioid receptors, nitric oxide, and KATP channels, and is not toxic to zebrafish.

6.
Eur J Med Chem ; 260: 115760, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37657273

RESUMO

Cannabis is a general name for plants of the genus Cannabis. Used as fiber, medicine, drug, for religious, therapeutic, and hedonistic purposes along the millenia, it is mostly known for its psychoactive properties. One of its major constituents, cannabidiol (CBD), a non-psychoactive substance, among many other biological activities, has shown potential as an anti-SARS-CoV-2 drug. In this work, three derivatives and an analogue of CBD were synthesized, and cell viability and antiviral activities were evaluated. None of the compounds showed cytotoxicity up to a maximum concentration of 100 µM and, in contrast, displayed a significant antiviral activity, superior to remdesivir and nafamostat mesylate, with IC50 values ranging from 9.4 to 1.9 µM. In order to search for a possible molecular target, the inhibitory activity of the compounds against ACE2 was investigated, with expressive results (IC50 ranging from 3.96 µM to 0.01 µM).


Assuntos
COVID-19 , Canabidiol , Humanos , Canabidiol/farmacologia , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2 , Antivirais/farmacologia
7.
Front Immunol ; 14: 1193256, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545509

RESUMO

Background: Plasmodium spp. infection triggers the production of inflammatory cytokines that are essential for parasite control, and conversely responsible for symptoms of malaria. Monocytes play a role in host defense against Plasmodium vivax infection and represent the main source of inflammatory cytokines and reactive oxygen species. The anti-inflammatory cytokine IL-10 is a key regulator preventing exacerbated inflammatory responses. Studies suggested that different clinical presentations of malaria are strongly associated with an imbalance in the production of inflammatory and anti-inflammatory cytokines. Methods: A convenience sampling of peripheral blood mononuclear cells from Plasmodium vivax-infected patients and healthy donors were tested for the characterization of cytokine and adenosine production and the expression of ectonucleotidases and purinergic receptors. Results: Here we show that despite a strong inflammatory response, monocytes also bear a modulatory role during malaria. High levels of IL-10 are produced during P. vivax infection and its production can be triggered in monocytes by P. vivax-infected reticulocytes. Monocytes express high levels of ectonucleotidases, indicating their important role in extracellular ATP modulation and consequently in adenosine production. Plasmatic levels of adenosine are not altered in patients experiencing acute malaria; however, their monocyte subsets displayed an increased expression of P1 purinergic receptors. In addition, adenosine decreases Tumor Necrosis Factor production by monocytes, which was partially abolished with the blockage of the A2a receptor. Conclusion: Monocytes have a dual role, attempting to control both the P. vivax infection and the inflammatory response. Purinergic receptor modulators emerge as an untapped approach to ameliorate clinical malaria.


Assuntos
Malária Vivax , Malária , Humanos , Plasmodium vivax , Interleucina-10 , Leucócitos Mononucleares/metabolismo , Malária Vivax/parasitologia , Citocinas/metabolismo , Inflamação
8.
Cytokine ; 168: 156237, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37257305

RESUMO

BACKGROUND: Acute bacterial meningitis (ABM) causes excessive activation of N-methyl-D-aspartate receptors (NMDAr), leading to cortical and hippocampal neuron death. As opposite, enteroviral meningitis is more frequently benign. The kynurenine (KYN) pathway is the major catabolic route of tryptophan (TRP) and some of its metabolites are agonists or antagonists of NMDAr. METHODS: In order to investigate the pathogen-specific patterns of KYN pathway modulation in the central nervous system of children with acute meningococcal (MM), pneumococcal (PM) or enteroviral (VM) meningitis, the cerebrospinal fluid (CSF) concentrations of TRP, KYN, kynurenic acid (KYNA) and quinolinic acid (QUINA) were evaluated by ultra-high performance liquid chromatography (uHPLC) coupled to mass spectrometry. In addition, CSF levels of IL-6, IL-10 and TNF-α were quantified by multi-analyte flow assay. The data was mined and integrated using statistical and machine learning methods. RESULTS: The three forms of meningitis investigated herein up-regulated the neurotoxic branch of the KYN pathway within the intrathecal space. However, this response, represented by the concentration of QUINA, was six and nine times higher in PM patients compared to MM or VM, respectively. CSF levels of IL-6, TNF-α, and IL-10 were increased in MM and PM patients when compared to controls. In VM, CSF IL-6 and IL-10, but not TNF-α were increased compared to controls, although not reaching the high levels found in bacterial meningitis. No correlation was found between the concentrations or the ratios of any pair of KYN metabolites and any cytokine or standard cytochemical parameter tested. CONCLUSIONS: CNS infection with meningococci, pneumococci, and enteroviruses intrathecally activate the KYN pathway, favoring its neurotoxic branch. However, in PM, higher CSF levels of QUINA, compared to MM and VM, may contribute to its poorer neurologic outcome.


Assuntos
Meningites Bacterianas , Meningite Pneumocócica , Criança , Humanos , Cinurenina/metabolismo , Interleucina-10 , Interleucina-6 , Triptofano/metabolismo , Sistema Nervoso Central/metabolismo
9.
Molecules ; 28(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36985517

RESUMO

The ethnomedicinal plant Curatella americana L. (Dilleniaceae) is a common shrub in the Brazilian Cerrado, whose ethanolic extract showed significant in vitro anti-Zika virus activity by the MTT colorimetric method. Currently, there is no drug in clinical use specifically for the treatment of this virus; therefore, in this work, the antiviral and cytotoxic properties of the ethanolic extract, fractions, and compounds were evaluated. The ethanolic extract of the leaves showed no cytotoxicity for the human MRC-5 cell and was moderately cytotoxic for the Vero cell (CC50 161.5 ± 2.01 µg/mL). This extract inhibited the Zika virus multiplication cycle with an EC50 of 85.2 ± 1.65 µg/mL. This extract was fractionated using the liquid-liquid partition technique, and the ethyl acetate fraction showed significant activity against the Zika virus with an EC50 of 40.7 ± 2.33 µg/mL. From the ethyl acetate fraction, the flavonoids quercetin-3-O-hexosylgallate (1), quercetin-3-O-glucoside (2), and quercetin (5) were isolated, and in addition to these compounds, a mixture of quercetin-3-O-rhamnoside (3) and quercetin-3-O-arabinoside (4) was also obtained. The isolated compounds quercetin and quercetin-3-O-hexosylgallate inhibited the viral cytopathic effect at an EC50 of 18.6 ± 2.8 and 152.8 ± 2.0, respectively. Additionally, analyses by liquid chromatography coupled to a mass spectrometer allowed the identification of another 24 minor phenolic constituents present in the ethanolic extract and in the ethyl acetate fraction of this species.


Assuntos
Dilleniaceae , Infecção por Zika virus , Zika virus , Humanos , Flavonoides/química , Quercetina , Etanol/análise , Extratos Vegetais/química , Folhas de Planta/química , Infecção por Zika virus/tratamento farmacológico
10.
Nat Prod Res ; 37(4): 613-617, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35428404

RESUMO

Millingtonia hortensis L.f. and Oroxylum indicum (L.) Kurz (Bignoniaceae) are native species from the Asian continent. They are popularly used in traditional medicine and their extracts are rich in flavonoids. In this work, ethanolic extracts of stems and leaves of these species were evaluated against the Chikungunya, Zika and Mayaro virus. The extracts were subjected to analysis by ultra-efficient liquid chromatography coupled to mass spectrometry. Additionally, M. hortensis leaves extract was fractionated, leading to the isolation of hispidulin. Anti-arboviral activity against the three viruses was detected for M. hortensis leaves extract with EC50 ranging from 37.8 to 134.1 µg/mL and for O. indicum stems extract with EC50 ranging from 18.6 to 55.9 µg/mL. Hispidulin inhibited viral cytopathic effect of MAYV (EC50 value 32.2 µM) and CHIKV (EC50 value 78.8 µM). In LC-DAD-ESI-MS/MS analysis we characterized 25 flavonoids confirming once again the presence of these substances in extracts of these species.


Assuntos
Bignoniaceae , Infecção por Zika virus , Zika virus , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectrometria de Massas em Tandem , Bignoniaceae/química , Flavonoides/química , Etanol
11.
Molecules ; 27(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36144777

RESUMO

Plant extracts are complex mixtures that are difficult to characterize, and mass spectrometry is one of the main techniques currently used in dereplication processes. Fridericia chica is a species with medicinal uses in Latin American countries, used in the treatment of inflammatory and infectious diseases. Extracts of this plant species are characterized by the presence of anthocyanidins. In this study, using high-resolution mass spectrometry coupled with liquid chromatography, it was possible to determine the molecular formula of thirty-nine flavonoids. Fragmentation analysis, ultraviolet spectrum and nuclear magnetic resonance data allowed the partial characterization of the structures of these compounds. The spectral dataset allowed the identification of a series of flavones in addition to the desoxyanthocyanidins common in extracts of the species. The occurrence of some of the proposed structures is uncommon in extracts of species of the Bignoniaceae family, and they are reported for the first time in the extract of this species. Quantitative analyses of total flavonoids confirmed the high content of these constituents in the species, with 4.09 ± 0.34 mg/g of dry plant material. The extract under study showed low in vitro cytotoxicity with CC50 ≥ 296.7 ± 1.4 µg/mL for Vero, LLC-MK2 and MRC-5 cell lines. In antiviral activity assays, inhibition of the cytopathic effects of Dengue, Zika and Mayaro viruses was observed, with EC50 values ranging between 30.1 and 40.9 µg/mL. The best result was observed against the Mayaro virus, with an EC50 of 30.1 µg/mL.


Assuntos
Bignoniaceae , Flavonas , Infecção por Zika virus , Zika virus , Antocianinas/análise , Antivirais/análise , Antivirais/farmacologia , Bignoniaceae/química , Flavonas/análise , Flavonas/farmacologia , Flavonoides/análise , Flavonoides/farmacologia , Espectrometria de Massas , Extratos Vegetais/química , Folhas de Planta/química
12.
J Agric Food Chem ; 70(6): 1799-1809, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35130436

RESUMO

To investigate the herbicidal potential of 2,5-diketopiperazines (2,5-DKPs), we applied a known protocol to produce a series of 2,5-DKPs through intramolecular N-alkylation of Ugi adducts. However, the method was not successful for the cyclization of adducts presenting aromatic rings with some substituents at the ortho position. Results from DFT calculations showed that the presence of voluminous groups at the ortho position of a benzene ring results in destabilization of the transition structure. Lower activation enthalpies for the SN2-type cyclization of Ugi adducts were obtained when bromine, instead of a chlorine anion, is the leaving group, indicating that the activation enthalpy for the cyclization step controls the formation of the 2,5-DKP. Some Ugi adducts and 2,5-DKPs formed crystals with suitable qualities for single-crystal X-ray diffraction data collection. Phytotoxic damage of some 2,5-DKPs on leaves of the weed Euphorbia heterophylla did not differ from those caused by the commercial herbicide diquat.


Assuntos
Herbicidas , Alquilação , Teoria da Densidade Funcional , Dicetopiperazinas , Estrutura Molecular , Raios X
13.
Chem Biodivers ; 19(3): e202100788, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35146890

RESUMO

Mauritia flexuosa Linnaeus filius (buriti or aguage; Arecaceae) is a palm used by traditional medicine in Brazil to treat dysentery and diarrhea. Our group showed that the soluble dichloromethane (CH2 Cl2 ) fraction from EtOH extract from M. flexuosa stems inhibited the growth of methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) and it is rich in phenolic compounds. This study aimed to isolate new phenolic compounds from CH2 Cl2 fraction from M. flexuosa stems with in vitro antibacterial activity. The crude CH2 Cl2 fraction was fractionated by gel permeation chromatography (GPC) followed by semi-preparative RP-HPLC. The antibacterial activity was evaluated using the broth microdilution method against MSSA (ATCC 29213) and MRSA (clinical isolate 155). All compounds were also tested against Gram-negative (Escherichia coli; ATCC 35218) bacteria and two fungi species (Candida albicans; ATCC 14053 and Trichophyton rubrum; ATCC MYA 4438). The chemical structures of isolated compounds were determined by analysis and comparison with literature data of their NMR and HRMS spectra and optical activity. The chemical investigation yielded seven aromatic compounds, of which four, (2S,15S)-2,15-dimethyl-2,15-dioxa-1,8(1,4)-dibenzenacyclotetradecaphane (1), (2S,5S)-1-(4-hydroxyphenyl)hexane-2,5-diol (3), bruguierol E (4), and buritin (5) were previously unreported and three are known compounds identified as 6-(4'-hydroxyphenyl) hexan-2-one (2), (+)-(2R,3R)-dihydrokaempferol (6), and (+)-(2R)-naringenin (7). Compounds 1 and 7 showed antibacterial activity against MRSA and MSSA with minimum inhibitory concentrations (MICs) of between 62.5 and 31.3 µg/mL, respectively. Our preliminary findings support that CH2 Cl2 fraction from buriti, a typical species of flooded areas of Brazilian savanna, and its aromatic phenolic compounds are active against MSSA and MRSA contributing with understanding about the traditional use of this species.


Assuntos
Arecaceae , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Arecaceae/química , Testes de Sensibilidade Microbiana , Staphylococcus aureus
14.
Nat Prod Res ; 36(24): 6304-6311, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35156453

RESUMO

Bioassay-guided fractionation of dichloromethane extract from Athenaea velutina leaves led to the isolation of three withanolides, all being reported for the first time in this species. They were identified as withacnistin (1), withacnistin acetate (2) and a new withanolide, designated as withalutin (3). The structures were established by spectral data analysis, including MS, 1D and 2D NMR. In addition, in silico ADMET studies were employed to understand the pharmacokinetic properties of these withanolides. The withanolides isolated from A. velutina reduced cancer cell viability with IC50 values ranging from 1.52 to 5.39 µM. In silico prediction revealed that withanolides have good gastrointestinal absorption or oral bioavailability properties; and are not likely to be mutagenic or hepatotoxic. These findings revealed that A. velutina is an important source of cytotoxic withanolides.


Assuntos
Antineoplásicos , Solanaceae , Vitanolídeos , Vitanolídeos/química , Solanaceae/química , Lactonas/análise , Folhas de Planta/química , Antineoplásicos/análise
15.
Virol J ; 19(1): 31, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193667

RESUMO

BACKGROUND: The worldwide epidemics of diseases as dengue and Zika have triggered an intense effort to repurpose drugs and search for novel antivirals to treat patients as no approved drugs for these diseases are currently available. Our aim was to screen plant-derived extracts to identify and isolate compounds with antiviral properties against dengue virus (DENV) and Zika virus (ZIKV). METHODS: Seven thousand plant extracts were screened in vitro for their antiviral properties against DENV-2 and ZIKV by their viral cytopathic effect reduction followed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, previously validated for this purpose. Selected extracts were submitted to bioactivity-guided fractionation using high- and ultrahigh-pressure liquid chromatography. In parallel, high-resolution mass spectrometric data (MSn) were collected from each fraction, allowing compounds into the active fractions to be tracked in subsequent fractionation procedures. The virucidal activity of extracts and compounds was assessed by using the plaque reduction assay. EC50 and CC50 were determined by dose response experiments, and the ratio (EC50/CC50) was used as a selectivity index (SI) to measure the antiviral vs. cytotoxic activity. Purified compounds were used in nuclear magnetic resonance spectroscopy to identify their chemical structures. Two compounds were associated in different proportions and submitted to bioassays against both viruses to investigate possible synergy. In silico prediction of the pharmacokinetic and toxicity (ADMET) properties of the antiviral compounds were calculated using the pkCSM platform. RESULTS: We detected antiviral activity against DENV-2 and ZIKV in 21 extracts obtained from 15 plant species. Hippeastrum (Amaryllidaceae) was the most represented genus, affording seven active extracts. Bioactivity-guided fractionation of several extracts led to the purification of lycorine, pretazettine, narciclasine, and narciclasine-4-O-ß-D-xylopyranoside (NXP). Another 16 compounds were identified in active fractions. Association of lycorine and pretazettine did not improve their antiviral activity against DENV-2 and neither to ZIKV. ADMET prediction suggested that these four compounds may have a good metabolism and no mutagenic toxicity. Predicted oral absorption, distribution, and excretion parameters of lycorine and pretazettine indicate them as candidates to be tested in animal models. CONCLUSIONS: Our results showed that plant extracts, especially those from the Hippeastrum genus, can be a valuable source of antiviral compounds against ZIKV and DENV-2. The majority of compounds identified have never been previously described for their activity against ZIKV and other viruses.


Assuntos
Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Animais , Antivirais/química , Chlorocebus aethiops , Dengue/tratamento farmacológico , Humanos , Células Vero
16.
Chirality ; 33(8): 479-489, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34213029

RESUMO

An interesting protocol for stereoselective synthesis of (-)-cytoxazone and its unnatural stereoisomer (+)-5-epi-cytoxazone from d-4-hydroxyphenylglycine in overall yields of 10% and 16%, respectively, is described. The stereoselective addition of cyanide to an N-Boc protected aminoaldehyde (tert-butyl ((R)-1-(4-methoxyphenyl)-2-oxoethyl)carbamate) (5) constitutes the key step in this approach, producing a mixture of cyanohydrins 6a and b (1,2-anti and 1,2-syn tert-butyl (2-cyano-2-hydroxy-1-(4-methoxyphenyl)ethyl)carbamate) in 89% yield, with reasonable stereoselectivity (1.0:1.8) in favor of the anti-Felkin product (1,2-syn). A one-pot sequence of three successive steps from this mixture produced the oxazolidinone isomers 9a and b ((4R,5R)- and (4R,5S)-4-(4-methoxyphenyl)-2-oxooxazolidine-5-carboxylate). Chromatographic column separation and reduction of the ester function of both precursors led to (-)-cytoxazone and (+)-5-epi-cytoxazone.

17.
Pest Manag Sci ; 77(10): 4638-4647, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34092005

RESUMO

BACKGROUND: Using plant-based extracts and their constituents has been suggested as an alternative tool to replace or integrate with the synthetic compounds used to manage insect pests. Here, we evaluated the potential of extracts obtained from Ficus carica Linn (Moraceae) branches and leaves against the Neotropical brown stink bug, Euschistus heros, one of the most prevalent insect pests in soybean fields. We further isolated and evaluated the toxicity of the extracts' major components against E. heros. Additionally, by using computational docking analysis and toxicological approaches, we assessed the physiological basis for the selectivity of these extracts against beneficial insects such as pollinator bees (i.e. Apis mellifera and the Neotropical stingless bee Partamona helleri), ladybeetles (Eriopis connexa and Coleomegilla maculata), and lacewings (Chrysoperla externa). RESULTS: Our results demonstrate that branch (LC50  = 5.9 [4.7-7.1] mg mL-1 ) and leaf (LC50  = 14.1 [12.5-15.4] mg mL-1 ) extracts exhibited similar toxicity against E. heros. Our phytochemical analysis revealed psoralen and bergapten furanocoumarins as the major components of the extract. Based on our computational predictions, these molecules' differential abilities to physically interact with the acetylcholinesterases of E. heros and beneficial insects play relevant roles in their selectivity actions. The estimated LC90 values of branch (30.0 mg mL-1 ) and leaf (30.0 mg mL-1 ) extracts killed less than 12% of the beneficial insects. CONCLUSION: Overall, our findings revealed that furanocoumarin-rich extracts obtained from F. carica extracts have the potential to be used as alternative tools in the integrated management of stink bug pests. © 2021 Society of Chemical Industry.


Assuntos
Besouros , Ficus , Heterópteros , Animais , Abelhas , Extratos Vegetais
18.
Nat Prod Res ; 35(16): 2691-2699, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31530021

RESUMO

Chagas disease is an illness caused by the protozoan parasite Trypanosoma cruzi. Only two drugs are available, with the drawback of low rate of cure in the chronic phase of the disease and undesirable side effects. These facts highlight the need to find new compounds for Chagas disease chemotherapy. We describe the isolation and identification of an inseparable mixture of two new trixikingolides from Trixis vauthieri, a plant from family Asteraceae, which present outstanding in vitro trypanocidal activity, with IC50 value of 0.053 µM against the intracellular trypomastigotes and amastigotes forms of T. cruzi infecting L929 cells. The IC50 of the mixture against the host cells is 68 times higher and about 70 times more potent than benznidazole, the reference drug used as control at the experiments. The next step, which depends on obtaining larger quantities of the mixture, is to test it on mice infected with T. cruzi.


Assuntos
Asteraceae , Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Animais , Asteraceae/química , Doença de Chagas/tratamento farmacológico , Camundongos , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Tripanossomicidas/isolamento & purificação , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos
19.
Parasite Immunol ; 42(9): e12720, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32275066

RESUMO

INTRODUCTION: The intestinal microbiota plays an important role in modulating host immune responses. Oral Toxoplasma gondii infection can promote intestinal inflammation in certain mice strains. The IDO-AhR axis may control tryptophan (Trp) metabolism constituting an important immune regulatory mechanism in inflammatory settings. AIMS: In the present study, we investigated the role of the intestinal microbiota on Trp metabolism during oral infection with T gondii. METHODS AND RESULTS: Mice were treated with antibiotics for four weeks and then infected with T gondii by gavage. Histopathology and immune responses were evaluated 8 days after infection. We found that depletion of intestinal microbiota by antibiotics contributed to resistance against T gondii infection and led to reduced expression of AhR on dendritic and Treg cells. Mice depleted of Gram-negative bacteria presented higher levels of systemic Trp, downregulation of AhR expression and increased resistance to infection whereas depletion of Gram-positive bacteria did not affect susceptibility or expression of AhR on immune cells. CONCLUSION: Our findings indicate that the intestinal microbiota can control Trp availability and provide a link between the AhR pathway and host-microbiota interaction in acute infection with T gondii.


Assuntos
Microbioma Gastrointestinal/fisiologia , Toxoplasmose/metabolismo , Triptofano/metabolismo , Animais , Feminino , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Toxoplasma/imunologia , Toxoplasmose/imunologia
20.
Malar J ; 17(1): 436, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30477525

RESUMO

BACKGROUND: Several species of Aspidosperma plants are referred to as remedies for the treatment of malaria, especially Aspidosperma nitidum. Aspidosperma pyrifolium, also a medicinal plant, is used as a natural anti-inflammatory. Its fractionated extracts were assayed in vitro for activity against malaria parasites and for cytotoxicity. METHODS: Aspidosperma pyrifolium activity was evaluated against Plasmodium falciparum using extracts in vitro. Toxicity towards human hepatoma cells, monkey kidney cells or human monocytes freshly isolated from peripheral blood was also assessed. Anti-malarial activity of selected extracts and fractions that presented in vitro activity were tested in mice with a Plasmodium berghei blood-induced infection. RESULTS: The crude stem bark extract and the alkaloid-rich and ethyl acetate fractions from stem extract showed in vitro activity. None of the crude extracts or fractions was cytotoxic to normal monkey kidney and to a human hepatoma cell lines, or human peripheral blood mononuclear cells; the MDL50 values of all the crude bark extracts and fractions were similar or better when tested on normal cells, with the exception of organic and alkaloidic-rich fractions from stem extract. Two extracts and two fractions tested in vivo caused a significant reduction of P. berghei parasitaemia in experimentally infected mice. CONCLUSION: Considering the high therapeutic index of the alkaloidic-rich fraction from stem extract of A. pyrifolium, it makes the species a candidate for further investigation aiming to produce a new anti-malarial, especially considering that the active extract has no toxicity, i.e., no mutagenic effects in the genototoxicity assays, and that it has an in vivo anti-malarial effect. In its UPLC-HRMS analysis this fraction was shown to have two major components compatible with the bisindole alkaloid Leucoridine B, and a novel compound, which is likely to be responsible for the activity against malaria parasites demonstrated in in vitro tests.


Assuntos
Antimaláricos/farmacologia , Aspidosperma/química , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/administração & dosagem , Antimaláricos/isolamento & purificação , Antimaláricos/toxicidade , Brasil , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Feminino , Haplorrinos , Humanos , Malária/terapia , Camundongos , Carga Parasitária , Parasitemia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Plasmodium berghei/isolamento & purificação , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...